Calpain-10 is a component of the obesity-related quantitative trait locus Adip1.

نویسندگان

  • James M Cheverud
  • Gloria L Fawcett
  • Joseph P Jarvis
  • Elizabeth A Norgard
  • Mihaela Pavlicev
  • L Susan Pletscher
  • Kenneth S Polonsky
  • Honggang Ye
  • Graeme I Bell
  • Clay F Semenkovich
چکیده

We previously mapped Adip1, an obesity quantitative trait locus (QTL), to the central portion of murine chromosome 1 containing the calpain-10 (Capn10) gene. Human studies have associated calpain-10 (CAPN10) variants with type 2 diabetes and various metabolic traits. We performed a quantitative hybrid complementation test (QHCT) to determine whether differences attributed to Adip1 are the result of variant Capn10 alleles in LG/J and SM/J mice. We crossed LG/J and SM/J to wild-type (C57BL/6J) and Capn10 knockout (Capn10(-/-)) mice to form four F(1) hybrid groups: LG/J by wild-type, LG/J by Capn10(-/-), SM/J by wild-type, and SM/J by Capn10(-/-). We performed a two-way ANOVA with the experimental strain, tester strain, and their interaction as the factors. Significant interaction indicates a quantitative failure to complement. We found failure to complement for fat, organ, and body weights, and leptin, female free fatty acid, and triglyceride levels. Capn10(-/-) resulted in heavier weights and higher serum levels in LG/J crosses but not in SM/J crosses. For glucose tolerance and insulin response tests, the Capn10(-/-) allele resulted in lower glucose levels in crosses with SM/J but had no effect in the LG/J crosses. Differences between the LG/J and SM/J Capn10 alleles are the likely source of some of the QTL effects mapped to Adip1 in the LG/J-by-SM/J cross. Capn10 plays an important role in regulating obesity and diabetes in mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping the epistatic network underlying murine reproductive fatpad variation.

Genome-wide mapping analyses are now commonplace in many species and several networks of interacting loci have been reported. However, relatively few details regarding epistatic interactions and their contribution to complex trait variation in multicellular organisms are available and the identification of positional candidate loci for epistatic QTL (epiQTL) is hampered, especially in mammals, ...

متن کامل

Sex-, Diet-, and Cancer-Dependent Epistatic Effects on Complex Traits in Mice

The genetic basis of quantitative traits such as body weight and obesity is complex, with several hundred quantitative trait loci (QTLs) known to affect these and related traits in humans and mice. It also has become increasingly evident that the single-locus effects of these QTLs vary considerably depending on factors such as the sex of the individuals and their dietary environment, and we wer...

متن کامل

Unveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice

Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...

متن کامل

Genetic Polymorphism at MTNR1A, CAST and CAPN Loci in Iranian Karakul Sheep

Genotypes for melatonin receptor type 1A (MTNR1A) and Calpastatin (CAST) were determined by enzymatic digestion of PCR products and Calpain(CAPN) genotype detected by PCR-SSCP method in Iranian Karakul sheep. Blood samples were collected from 100 purebred Karakul sheep. The extraction of genomic DNA was based on guanidinium thiocyanate- silica gel method. PCR amplicons were digested with restri...

متن کامل

Identification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks

Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of lipid research

دوره 51 5  شماره 

صفحات  -

تاریخ انتشار 2010